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Abstract. A class of integrable two-dimensional (2D) classical systems with integrals of motion
of fourth order in momenta is obtained from the quantum analogues with the help of deformed
SUSY algebra. With similar technique a new class of potentials connected with the Lax method
is found which provides the integrability of corresponding 2D Hamiltonian systems. In addition,
some integrable 2D systems with potentials expressed in elliptic functions are explored.

1. Introduction

Construction of classical integrable systems with additional integrals of motion is
of considerable interest in mathematical physics (see [1] and references therein).
Multidimensional integrable systems play an important role in describing the dynamics
analogously to one-dimensional (1D) manifestly integrable systems. In particular, they
may serve as zero approximations of perturbation theory in the case of weak, nonintegrable
perturbations. A variety of traditional approaches to this problem exists starting from Kepler,
Kowalewski until the Lax method. On the other hand, a modern viewpoint on how to
build classical integrable systems is based on the symmetries of related quantum systems
[2]. Recently, a method for searching quantum-integrable two-dimensional (2D) systems
was developed [3, 4] with the help of a deformed supersymmetry (SUSY) algebra formed by
intertwining differential operators of finite order. Supersymmetry [5—7], i.e. the construction
of the isospectral pair of Hamiltonians, was proved [3] to be in one-to-one correspondence
to integrability of both Hamiltonians, i.e. to existence of a differential symmetry operator,
which is polynomial in derivatives and which transforms solutions of the 2D d&lohger
equation into other solutions with the same energy. Quasiclassical reduction of the deformed
SUSY algebra [3] gave the factorization of classical integrals of motion for the corresponding
Hamiltonians [8]. As aresult, the structure of analytically resolved integrals of motion became
clearer, and new classes of integrable potentials were found [8, 9].

In our paper we continue our study [9] of classical systems in which integrability is induced
or inspired by a deformed SUSY algebra for the relevant quantum systems. The concise basic
construction of systems possessing a dynamical symmetry with the help of higher-derivative
SUSY algebra is essentially supplemented with algorithms for searching analytical solutions of
related nonlinear equations for coefficients of functions of symmetry operators and potentials.

In section 2 the intertwining relations between a pair of quantum &ithger-type
Hamiltonians for general differential operaters of second order are investigated. The class

0305-4470/99/254641+14$19.50 © 1999 IOP Publishing Ltd 4641



4642 A A Andrianov et al

of particular solutions of these relations is constructed for the cases of hyperbolic (Lorentz)
gix = diag(1, —1) and degeneratg;, = (1, 0) metric structures of operatots" in second
derivatives. The differential operators of fourth order in derivatives, which are symmetry
operators for intertwined Hamiltonians, are built. In section 3 the classical Aimit 0 for

the Hamiltonians is considered, and the class of systems with integrals of motion of fourth
order in momenta is obtained. In sectié a newclass of integrable systems with potentials
connected to the Lax method is derived usingérs and techniques taken from 2D SUSY
quantum mechanics (section 2). Section 5 is devoted to a description of some integrable
systems expressed in elliptic functions. We stress that quite a few of the obtained potentials do
not allow separation of variables in known coordinate systems and some of them so far have
not been found.

2. Quantum integrable 2D systems

In the two-dimensional generalization [3, 4, 8] of higher-order SUSY quantum mechanics [10]
the intertwining relations of second order in derivatives are most essential:
H(l)q+ — q+H(2) q*H(l) — H(Z)q*
HD = —R2A + V(¥) A =02+02 9 = 9/0x; (1)
q* = (q7)" =g (®)3;0 +hC;(¥, 7)d; + B(¥, T)
whererr is Planck’s constant and all coefficient functions are real.
This means that, up to zero modeg&f spectra off ) coincide and their eigenfunctions
are
@ ~ q_\lf(l) gD ~ q*\p(z). )
The intertwining relations (1) lead to existence of the symmetry oper&orsRr® for
the Hamiltoniansd ®, H@ | respectively,
[RD, HD] =0 RO =g4*q R® =g ¢* i=1,2 )

In the 1D case [10] analogous symmetry operakifsbecome polynomials off ) with
constant coefficients. The distinguishing peculiarity of the 2D case is existence [4] of nontrivial
dynamical symmetry operato®? which are not reduced to functions of the Hamiltonians
HD,

It was shown in [3] that for the unit metrics;, = §;, operatorsR® can be written
as second-order differential operators (up to a functiof6f) and corresponding quantum
systems allow separation of variables in parabolic, elliptic or polar coordinate systems. For
all other metricg;; operatorskR” are of fourth order in the derivatives.

The intertwining relations (1) are equivalent to the following system of differential
equations:

R Cic + RokC; + R Agiy — (VY = V@)gy = 0
R2AC; + 2h9; B + 2hgu VP — (v —v @), =0 4)
WPAB + 2y, VP +hC;o; V@ — (vD —v@)yp =0
where the metricg;, is a quadratic polynomial imy, xo:
g11 = ax3 +axa + by
922 = ax? +azxy + by

1
812 = —3(2axy1xz + aixy + agxz) + bs.
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2.1. Lorentz metrics

For the supercharges with Lorentz metrigs, = diag(1, —1)):

q" =h2(07 — 83) +hC 3 + B (5)
a solution of (4) can be reduced [4] to a solution of the system

0_(C_F) = —0+(C+F) (6)

32F = 0°F (7)

whereC; F C, = C+(x+) depend only o, respectively. Equation (7) means that the
function F can be represented as a sfina= Fy(x+ +x_) + F>(x+ — x_). The potentiald/ *2)
and the functiorB are expressed in terms of solutions of the system (6) and (7):

V2 = £IR(CL+C) + 3(C2+ C2) + 3 (Fa(xy — x_) — Fi(xs +x_)) (8)
B = (C+C_+ Fi(xs +x_) + Fo(xs — x_)). 9)

The solutions for functiong’, which admit additionally the factorizatioR = Fi(x:) -
F_(x_), were found in [14]. In the present paper other solutions of (6) and (7) will be built.

(1) After substitution of the general solution of (6)

F= L( dC—x: — / c%)/(ac) (10)

into (7), we obtain the functional-differential equation for functidnandA’, = 1/C(x+):

<Af A"
A, AL

)L(A+ — A +3AL+ AL (A — ALY+ (A? — ADL"(A—A) =0

(11)

whereL’ denotes the derivative d@f with respect to its argument. Equation (11) can be easily
solved for functionsA such thatd’, = A2A., then

LAr—A ) =a(As—A_)2+8

for AL = oL exp(Axy) + 8+ exp(—Axy) with oy - 8§+ = o_ - §_ ande, B8 real constants. For
22 > 0 we obtain (up to an arbitrary shift in.) two solutions:

(1a) Ay = kSinf(Axi)
(1b) At = kcosh(hxy).
Then (10) leads to:
k1 k
la) Fi(2x) = Fo(2x) = ———— + kp cos(2ix Cy=—— k#0
(l1a Fi(2x) 2(2x) cosR0m) 2 COSh(2ix) £ = Cosius) #
12)
(1b) Fi(2x) = —F>(2x) LR sinf?(0.x) c k k+#0
= — = —F X = — R
! 2 sinfPGur) =7 sinh(ixy)
(13)
For 22 < 0 hyperbolic functions must be substituted by trigonometric ones.
At last, in the limiting case of = 0 the solutions have the form
k
F1(2x) = —F>(2x) = kix 2 + kox? Ci=— k+0 (14)
X+

k
F1(2x) = —F2(2x) = kyx? + kox* Cy=+— k 0. (15)
X+
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(2) Tofind another class of solutions of the system (6) and (7) itis useful to replace ifi{(10)
by fi, suchthatCy = + £, /f.. ThenF in (10) is represented in the formi= U (f+ f_) f1 f_
with an arbitrary functiorU. After substitution in (7) one obtains the equation

L v
(FEf2 = F2HU"(f) +3 (———)U’(>+<———/)U<>=0 = Jef-
VAN Il iy fff+f7ff+, f_f f =K
One can check thaf. = ot exp(Aixy) + frexp(—Aixy) andU = a + 4bf, f_ are its
particular solutionga, b are real constants). Then functions

F1(x) = ka(ao_ exp(ix) + B+ B exp(—ix)) + ka(o2a? exp2ix) + 282 exp(—2ix))
—Fo(x) = ka(as B eXp(rx) + Bra_ eXp(—Ax)) + ka(a2 2 exp(2ix)
+B20” exp(—24ix)) (16)
oy eXP(Axy) + Br eXp(—Axy)
A(ors eXp(Axs) — B EXP(—Axs))

are real solutions of the system (6) and (%f, . are real for the case? > 0 ando.. = B
for the case.? < 0.

Ci==

(3) Tofind a third class of solutions it is useful to rewrite (6) in terms of the varialles
2(F1(x1) + F2(x2))31(Cs + C) + F(x1)(Cs + C_) + Fp(x2)(C+ — C) = 0.
Its solutions are:

(3a) Ci(x4) = o102 €XP(Axs) + 8182 €Xp(—Axs) + ¢
C_(x_) = o162 eXp(Ax_) + 0281 €Xp(—Ax_) + ¢ (17)
1

Fi(x1)) =0 Fo(x2) = (02 €Xp(rx2) — 82 eX[X—AxZ))Z

2
(3b) Cw=Cm=a?rc FRaD=0  Fn)= o (18)
X2
(3c) Ci(x4+) = 0102 €XP(Axs) + 8182 €Xp(—Ax+)
C_(x_) = o182 eXp(Ax_) + 0281 eXP(—Ax_) (19)
Fio(x12) = — ty.

(01,2 €XP(Ax12) £ 812 €XP(—AX12))?
Let us remark that two additional solutions, analogous to (3a) and (3b), can be obtained by
replacingFi(x;) with F»(x2) and vice versa.

After inserting these solutions (12)—(19) into the general formulae for potentials (8), we
obtain, correspondingly, the following expressions for potentials (20)—(27):

ya2 _ Eﬂ[ sinh(ixs) N sinh(Ax_) ] N k_z[ 1 N 1 }
" 2 [cosH(axs) cosH(rx.) cosf(ixs) cosf(rx_)

8

+

1 k1 1
= _ 2\ — 2\ 2
4 [cosﬁ(xxz) cost (Axy) + kz COSHZAxz) — kz COSH xl)} (20)

Rk [ coshiixy) N coshiix_) } N kz[ 1 1 ]

v — - +
2 [sinfP(xs)  sintP(hx_) sinff(Axy)  sinfP(Ax_)

8

1 k1 k1
_Z 2 2\ 21
4 [sinhz(xxz) ¥ sinl?(Ax1) + kp COSI(2Ax1) + kz COS XZ)} (21)

hk (1 1 K/ 1 1 1k Kk
VA —x [+ D)+ [+ ) =S =+ =GP +xD) . 22
+ 2 x-'z— xE 8 .X_% )CE 4 x]2. xg 2('x1 X2 ( )
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Let us note that the potential (21) with = 0 and the potential (22) were investigated in the
literature (cf, for example, [11]).

Rk(1 1\ kK*/1 1 1
V2 = :F7()7 - x—2> + §<x_3 + x_2> - Z[kl(sz_ +x5) + ka(x] +x3)] (23)
a2 _ 2Pl 8hA2) + a? exp(2ix+) + B2 exp(—2)x4)
8k2(a+ eX[X)\x+) — ﬂ+ EXIX—)»)Q.))Z
+2a, B_ (14 8hA%) + a? exp(2ix_) + B2 exp(—2Arx_)
8A2(a_ exp(Ax_) — B_ exp(—Aix_))?
—1[ky(a B €XP(20x2) + ar_ fr €XP(—20x2)) + k(a2 B2 €XP(4Ax2)
+02 B2 eXp(—4hx2)) + ki (ara— eXp2hxy) + Bs B XP(—2Ax1))
+ho(aZa? expdrxy) + B2 exp(—4ixy))] (24)
V&2 = £ 1R (0 expiixy) — 81 €XP(—Ax1)) (02 €XP(Ax2) + 82 €XP(—Ax2))
+3[(0F exp(ixy) + 87 eXp(—Ax1)) (07 eXp(xz) + 85 eXp(—Ax2))
+2c (01 exp(Ax1) — 81 €Xp(—Aix1)) (o2 €XP(Ax2) — 82 EX[X—)»)CZ))]
1

1%

+ (25)
4(op eXP(2Ax2) — 82 EXP(—2AX2))?2
_ b?
V&2 = 4 2haxy + %l[az(xil + x5+ 6x2x3) + ac(x? + x%)] +— (26)
X2
V2 = £1H2 (01 expihxy) — 81 €XP(—Ax1)) (02 €XP(Ax2) + 82 €XP(—Ax2))
+1 (07 exp(hxy) + 87 eXp(—Ax1)) (05 eXp(hxp) + 85 eXp(—Axz))
+ V2 V1
(02 eX[.XZ)\)Q) — 82 eX[)(—Zsz))Z (o1 eX[XZ)\xl) + 6, eX[X—Z)\xl))z '
(27)

The Hamiltonians with potentials (20)—(27) possess the symmetry opertbrs=
q*q~, R® = ¢q—¢*, whereg® can be obtained by inserting solutions (12)—(19) into (5).

Itis necessary to note thatthere are some singular points of potentials (21)—(27) on the plane
(x1, x2). Therefore, both the asymptotics of corresponding wavefunctions and their behaviour
under the action of supertransformation operagdr$5) and of symmetry operators?, R®
have to be investigated. In particular, for the potentials (23)—(27) the opetdtqseserve
asymptotics of wavefunctions in the singular points, so the oper&dtsrR®? are physical
symmetry operators for these systems. For the potentials (21) and (22) symmetry properties
have been discussed previously (see, for example, [11]).

2.2. Degenerate metrics

For the supercharges with degenerate mepics= diag(1, 0):

g  =h%2+hCi o + B (28)
equations (4) lead to
C1(X) = —x2F;(x1) + G1(x1); C2(X) = Fi(x1)

VY =R(2G) — xoF)) + $x3(FD) — x(F1G1)' + K1(x1) + Ko(x2)
V@ =Tx,F] + %xg(Flz)N — x2(F1G1)' + K1(x1) + K2(x2)
B = —3h(Gy +x2F)) + 3G — 3x5F1F] + x2F1G — K1(x1)

(29)
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where the real functionB; (x;), G1(x1) andK1(x;) are solutions of the following system:

—IRPGY + SH((GD" + 2G?) + G1K{ + 2G K1 — Fi(F1G1) — G1G% = m1Fy (30)
IR2F!"" — W(F{G{ +2G,F]) — G1(2G}F{ + G| Fy)

—F/K} + 1F\(F})" — 2GZF, — 2F{ K1 = moFy (31)
1GL(FY" + F{(F1G1)" + 3G F1F{ = m3F; (32)
FF(FD)" + FiF{? = myF; (33)

andK,(x») is the polynomial ofc, with constant coefficients:

Ko(x2) = mg — myxp — %mgxg — %mgxg + %m4x§.
Several particular solutions of equation (33) can be found. The constant fuigtiork,
is the solution of (33) forn, = 0. To find other solutions we define the new functidir,):

U(F1) = Fi(x1) (34)
to decrease the order of the differential equation (33):

3 3
U'+—U”+—U -=—=0. (35)
U Fi U3

Inserting its known solution [17] into (34), the following equation far(x;) is obtained:
/ F(maF}+nF2 + k)" Y4dF = x; n, k = constant (36)

The integral (36) can be written as a finite combination of elementary functions only in the
case when two of the three constamig n, k are zero. Thus the solutions of equation (33) in
elementary functions aref, = ki; F1 = x1/n; F1 = (%)2/3k1/6xf/3; Fy = my/*x2/4. Below,
for simplicity, we shall consider the solutions with particular values of constapi®, k,
while solutions with arbitrary values of these constants will differ by some of the coefficients
only. To solve equations (30)—(32) it is useful to consider separately two cases:0 and
G1 # 0. In both cases solutions with; = x; lead to potentiald’ 2 with separation of
variables. Below such solutions will be ignored.

1) G, =0.

In this case the potentialé™? for F; = k; correspond again to Sdkdinger equations

with separation of variables. More interesting choidgs = xf and F, = xf/?’ lead,

respectively, to potentialg-@rbitrary real constant):

VA2 = 2Ry, + Ix % + %(xf +6x2x5 + 8x§) - %mz(xf + 4x§) (37)
vd2 = %ﬁle_z + éﬁxgxl_A/s + %xl_z/3(x§ + gxf)gle/3 - %mg(Qxf + 4x§). (38)
(2) G1#0.

(2a) ForF; = k1 # 0 equation (31) leads to the following equation €1(x1):

/ G2dG,
R
k — im,Gt
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which has the solutions in terms of elementary functions in two cases: whkef), m, = 0
ork =0, m, < 0. For the first one, after redefinition of constants and translatiag, in

VO = SR Tk D 2 — Yk 2
1 Skam1\ 2/3 kg
*z(k%+k—2>xl g 9

The second casg = 0, m, < 0) leads to separation of variables.

(2b) If F; = x2/® and F; = x2 the general solutions of equation (32) can be found and after
substitution into (30), (31) give the functidty (x1). Corresponding potentials are

yL2 = 316sz172 + %szxl_4/3 + hky + %xl_z/s(xg + %xf) - gklxzxf/s
3
+%xf/3 + 2252 — gy + By (1 + 156)x2 (40)
VR = (32 By + 3)y? F 2y + 3 (v + 6edd + B
— 2127 + mp) (x5 + 4x5) — 3 (kmp + 6k + 4ky) x,. (41)

Because all potentials (37)—(41) are singular at theaxis, similar to the case of
Lorentz metrics, it is necessary to investigate separately the behaviour of wavefunctions
at x; — 0. Straightforward though cumbersome calculations show that the fourth-order
differential operator®®, R® (see equations (3)) preserve the asymptotics of wavefunctions
for systems (37)—(41) and play the role of true dynamical symmetry operators.

3. Construction of 2D integrable classical systems by the limit — 0

Quantum dynamical symmetries which were found by the intertwining method in section 2
have their natural analogues (integrals of motion) in the corresponding classical systems. These
integrals of motion are polynomials of fourth order in momenta. Similar to section 2, itis useful

to consider separately the classical limits for Lorentz and degenerate metrics.

3.1. Lorentz metrics

For the Lorentz metrics in the limit — 0 classical supercharge functions become
g = —4psp— £1(C_(x_)ps + Co(x) p-) + B(x_, x4).
From equations (8) and (3) we find that the classical Hamiltonian

ha = 2(pF + p2) + §(CZ+C2) + Z[ Fa(xs —x_) — Fi(xs +x.)] (42)
has the additional integral of motion:
I =16pip? + Cip? + C? pZ — 2(Fy + Fp) psp_ + B (43)

Such types of classical systems were considered in the literature (see [13] and references
therein). Usually the functional equation, which provides existence of integrals of motion for
corresponding classical systems, is solved by the Lax method. Comparison of (42) and (43)
with notations in [13] leads to the relations

vy = 1/8C?(x1)

vy = 1/8C? (x2)
v3(x-) = 1/16F2(x-)
v4(x+) = —1/16F1(x+)

(44)



4648 A A Andrianov et al

and functions, must satisfy [13] a certain functional equation (see equation (47) below). In
the next section we prove that (44), whete, F; , are solutions of the system (6) and (7),
also satisfy equation (47). Moreover, some additional solutions of this equation will be found

in section 4.

3.2. Degenerate metrics

Let us study the integrable classical systems which can be obtained in the limit O
from SSQM systems with degenerate metricgn The classical supercharges have the form
g, = (g)* = —p?+iC(¥)px + B(¥) and the Hamiltonian

Hy = pf + 3350 Ff — x2(F1G1)' + K1(x1) + Ka(x2) (45)
has the integral of motion of fourth order in momenta:
I =q,q, = py+(C{ —2B)pi + Cip5 +2C1Cap1pa + B2 (46)

All functions in (45) and (46) were defined in the previous section, where we haveitop0t
Thus in the case of degenerate metrics the following classical integrable systems are
obtained (new definitions of constants were used for some of these systems):

1)
V= %(xl + 6x1x2 + 8x2) + m(xl + 4x2) + lxl
I = pi+ (Bxfxg +muxf +xi +2x %) pi +x{p3

2.2 241, 4 2
—4x1x2p1p2 + (xlxz +mxy + 5xy +1lxg )

2
V= % x; (3x 2+xz) +m (9% + 4x3) +kx2l®
I = p + (ngxl + 2k)c2/3 + 18mx1 +xf/3)p1 +xf/3p§
—%xle pip2 t+ (lxgxl —kxf/s—gmxl 2xf/3)
3)
kikpy  _o5 1 3kimi1\ 2/3
V = ——3 X2Xq / + L_l. k% + k2 Xl/ — Mmi1Xx2
1 3k1m1 2k1k2 _
I=pt+|5(K3+ 2P — T o 2Rk | pR + K2 p3
2 ko 3
1/3 kiko 5 3, 1 3kimi\ o3 K27
+2k1k2x1/ pip2t [?xz X1 / Z k% - k—z xl/ - El
4)
1 —2/3 9 5k 2/3 3m 2/3 kz k
V= R / <2xf +x22) — Exle/ +— 8% 1/ + fo —mx2+ 5(1 + 150)x2
2 5 23 10k 23 , k? 3m1 2/3 , 43 4/3
I=pi+ (QXle ! 3 raxy St =xy P4l ) p2 4l pl

+2xf/3(—%x2xfl/3 +kx1) p1p2

1 23 3m1 93 143 K ,\?
+<9x2x1 + oy 8kx1/ 51/ it
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V = %(xf + 6xfx§ + 8x§) + m(xf + 4x§) + %k%xl_z — (kl — 2mk — gk?’)xz
1= p‘l1 + (6xfx§ + 2(m + kz)xf — 2kyxp — 4kxfxz + xf + %k%x;z + kkl)p%
+x7p3 + 21 (k1 — 2x2x2) p1p2
Ha+ (m+ TR0+ Bt ko — gk — Sk
These potentials are not new: they were found by other methods in [14-16].
In conclusion of this section we formulate the procedure of construction of integrals of

motion in terms of classical mechanics objects. For any classical Hamiltohlarend a
complex functiory, (X, p) = (¢g,)*, polynomial in momenta, such that

{ga, HaY =1 f (%, P)g; {(g)", Ha} = =i f (%, p)(g})*

with arbitrary real functionf (¥, p), the classical factorizable integral of motion= ¢, - g,
exists({, }-Poisson brackets).

4. Integrable systems connected with the Lax method

Let us consider classical systems with potentials of the form
Vi(x1, x2) = v1(x1) + v2(x2) + v3(x1 — x2) + va(x1 +x2).

It is known [13] that these systems have the integrals of motion of fourth order in momenta:
I = %P%P% +v2(x2) p2 — (v3(x1 — X2) — va(x1 +X2)) p1p2 + vi(x1) p3 + f

if the functionsvy, v,, v3, v4 satisfy the basic functional equation:

[va(x1 + x2) — v3(x1 — x2)][v5 (x2) — vy (x1)] + 2[vg (x1 + x2) — v3(x1 — x2)]

x[v2(x2) — v1(x1)] + 3vj(x1 + x2)[v5(x2) — vy (x1)]
+3v5(x1 — x2)[V5(x2) + v3(x1)] = 0. (47)

There is a list of known particular solutions of equation (47) in the book [13]. To search
for new solutions of this equation it is useful to rewrite it in the equivalent form

92(vvy + 2v20,v) = 91(vvy + 2v101v) (48)
where
v = vg(x1 + x2) — v3(x1 — X2). (49)
The general solution of equation (48) is
dxg dxz ) ( dxy dxz )]
v=|G —+ [ — | +L — — | —= JU1v2 v #0 v #£ 0
[ ( Vo ) Vv V1 vz /

(50)
whereG and L are arbitrary functions of their arguments. Thus the problem is reduced to
searching for the functions of the form (50), which satisfy the condition

(32 — 35)v =0. (51)

In particular, it is easy to check that all solutions which were found from SSQM ih the0
limitin section 3 (see equation (44)) are particular solutions of equation (47) and have the form
(50) withG = 0.
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Let us apply the technique, which was used in investigation of the system (6) and (7) in
the framework of SSQM, to find the new particular solutions of equation (48).

(1) If the functionv is factorizablev = uy(x1) - u2(x2), equation (48) admits separation of
variables and its solutions have the form

_ mifax exp(v/Axy) + by exp(—v/Axp)] + I

T (axexp(v/Axg) — b exp(—v/Axy))?2
vs = a1by €Xp(VA - x_) + azby eXp(—v/A - x_)
va = aaz €XP(V - x+) + biby exp(—v/A - x4)

k=12

(52)

where ford > 0 all constants are real and for< 0 a; = b andny, [ are real.
(2) Letusintroduce new functions
v = (W)~ v = (W) 2. (53)

Then equation (51) means that (derivatives;odnd L are taken in their arguments):
W]/.” é” " " / " " A
(G+L) — — —= |+ 3[(W] = W))G' + (W] + W5)L']
Wl W2
+Wi? = W)(G" + L") = 0. (54)

It is possible to construct several particular solutions of (54).

(2a) W12 = 012€Xp(Ax12) + 81,2 €XP(—Ax12) (55)
where constam? is real andy, 8, are complex. If these constants satisfy the condition
0'181 = 0'282 (56)

then substitution of (55) into (54) leads to an equation with separable variables. Its solutions
are
oy

G(Wy+ Wy) = ASTAL +a(Wy+ Wo)? + By (57)
— %2 _ 2
L(Wy— W) = Wr = Wa)2 +a(Wy — W2)* + B2 (58)

with arbitrary constants, «;, 8;(i = 1, 2).

Let us consider the case with > 0. Constants; ands; must be both real or both positive
because of the requirement that functiangx,) for n = 1, 2 should be real. Analogous
arguments work for the pair,, 3,. The condition (56) for realo;, ;) leads to two options:

Wi(x) = Wa(x) = k cosh(ix) (59)
Wi(x) = Wa(x) = ksinh(ix) keR (60)
and the functiorv is real for real constants, «;, 8; (i = 1, 2).
In the case of redloy, §;) and imaginary(o,, 8,) the solutions take the form
Wy = k sinh(Axy) W, = ik cosh(ixy) (61)
W1 = kcoshiAxy) Wy = ik sinh(Axy) k e R. (62)
Let us remark that in this case the arguments of the functibasdL are complex conjugated
and in order to have a real functierthe following relation must be fulfilled:

L*(Wp+ W) = —G(Wp + Wp).
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Thereforep, = —a7; o = —B;; @ = a* in (57) and (58).

(2b) Wi = W, = gx? g2 eR. (63)
It follows from equation (54) that
b
G = ag +ay(W1+ Wo) + a(Wy + Wp)? L=bo— ja(Wy — WZ)Z+W
where all constants are real.
Thus the functions, (n = 1, ..., 4) for solutions (59)—(63) are, respectively,
k
v1(x) = v2(x) = m
Kt ks (64)
= = k 2X k A
vt = a0 = o St G2 3COSH2Ax) + ks cost(Ax)
v1(x) = v2(x) ¢
X) = X)) = —F—mm
! 2 costt(Ax)
k1 ko
= k 2 k A
¥3(*) SInPG)  SinfOw/2) 3COSH2x) + kg coShAx) (65)
k1 + 4k, ko
= — k 2\x) — k. A
va(x) SnfPOw)  sintfow/2) 3 COSH(2Ax) — ka cOSHTAx)
v(x)—L v(x)—_L
BT Cos(ax) 2 T T SinkOx)
k1 + k2 sinh(Ax) (66)
v3(x) = v4(x) = ——————= + k3 cosh2Ax) — k4 Sinh(Ax)
costf(Ax)
v1(x) L (x) ¢
X)) = —— ix)= ———7—
! sink?(Ax) 2 costf(Ax)
v3(x) = %W + k3 cosh(2Ax) + k4 Sinh(Ax) (67)
va(x) = ki = kp Sinhxx) k3 COSN2Ax) — k4 SINN(Ax)
costf(ix)
v1(x) = va(x) = kx 2 V3(x) = va(x) = kyx 2 + kox? + kgx® + kax® (68)
81 82
V1 = Uy =
(81 €Xp(Ax) — o1 €XP(—Ax))?2 (82 eXp(Ax) — 02 €XP(—Ax))?2
(69)

v3(x) = k1 (8102 €XP(AX) + 0182 €XP(—AX)) + k2 (8502 €XP(2hx) + 0285 eXp(—2x))
va(x) = k1 (8182 €XP(AX) + 0102 XP(—AX)) + ka(0P02 €XP(24x) + 8285 exp(—2Ax)).

The solutions (65)—(67) are absent in the list of [13] and to our knowledge they are novel.
As to expressions (69), they are present in [13] onlyofdy > 0, 0282 > 0.

In conclusion, let us note that one can easily check some invariance properties of
equation (47). In particular, from arbitrary solutions (52) and (64)—(69) one derives new
ones with
v4(2x) — v1(x) v3(2x) — v2(x) v1(x) — —v3(x) v2(x) = —va(x). (70)

Equation (47) is invariant i1 » — v12 + ¢ andvz 4 — v3 4 + ¢ With arbitrary constants, c.
It is also invariant under dilation of all arguments— Ax;.
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5. Integrable systems with potentials, expressed in elliptic functions

In this section we formulate the method of construction of new integrable systems from
solutionsv; of equation (47), which were found in the previous section. If we define new
functions

Wi =AW W= foa(Wa) (72)
equation (54) takes the form

[G(W1+ W2) — L(W1 — W[ f5 (W) — f{'(W1)]
+2[G" (W + W2) — L" (W1 — W2)][ fa(W2) — f1(W1)]
+3G' (W1 + Wo)[ f5(W2) — f1(W1)]
+3L' (W1 — Wo)[ f5(W2) + f{(W1)] = 0. (72)

This equation has the same structure as equation (47), thus from (71) we obtain

W2 = vy (W) W32 = va(Wa)
G(W1+ Wa) = vg(W1 + Wy) L(W1 — W2) = —v3(W1 — Wp) (73)

where we can use solutions (52) and (64)—(69)dpx) (n = 1,...,4) with arguments
x12 replaced, respectively, bW ,. The first pair of equations in (73) defines functions
Wi(x1), Wa(x2) and the last two equations define new functighsL. Substituting these
sets of functions into (53) and (50), we find some new solutignsf the same equation (47)
from already known solutions, (see (52) and (64)—(69)).

Let us consider several examples of this method of reproducing new solutions.

(1) The first attempt to start our procedure from the simplest solutions (68) leads to a
discouraging result: we obtain the same solution. However, we can firstly transform
v1,2 <= v34in(68), using the invariance property (70) mentioned at the very end of section 4.
As follows from (73), the function®/; »(x1 ) are defined from the equations (we omit indices
i=12)

W?2(x) = kaW 2 + kW2 + kgW* + kaW® + ko

with constant;. It is useful to rewrite them in terms of functiods(x) = $W?(x):

U(x) = ky + koU + koU? + k3U® + kaU*. (74)
From (50) and (53) we obtain new solutions:
U(xy) U (x2)
Vi= Vo=g1——— 75
1=81 U2(xp) 2= 81 U2(xp) (75)

_ U'(x)U'(x2)
(U(x1) — U(x2))?

where arbitrary constanig, ¢ appear because solutions are defined from equation (47)
up to constant factors. We can check directly thattigx), which satisfy equation (74), the
right-hand side of (76) is the solution of equation (51).

When the right-hand side polynomial in equation (74) has degenerate tbots,can
be expressed through elementary functions and corresponds to solutions (52) and (64)—(69),
found above. When all roots are simplé(x) can be given in terms of elliptic functions.

Va(xy +x2) — Va(xy — x2)

(76)

(1a) Ux) =p(x)+b
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whereb is constant ang (x) is the Weierstrass function with semiperiadsandw, (their
values depend on constait3. Equations (75) and (76) lead to new solutions:

Vi(x) = Va(x) = a1 (x + w1) + azgp (x + w2) +azp (x + (01 + w2)/2)

Va(x) = Va(x) = ap (x)
wherea is an arbitrary constant and constastgk = 1, 2, 3) satisfy the following condition:

Za,f—Za,-aj =1
k

i#)

(1b) U(x) = snx + b, whereb is constant and sfx) is the Jacobi function with modulus
(it depends again on constait}. In this case new solutions are

V(x)_v(x)_am
v = A= crex dréx

_ 1 1.2 1.2
V3(X)—C<snz(x/2) k%cré(x/2) k)
V(>—(1—k2>( t 1 )
A =c Cre(x/2)  sr(x/2) )

(1c) U(x) =dnx +b.
Correspondingly, the new solution takes the form
dnx +b
sréx drfx

Va(x) = Va(x) = C(

Vix) = Va(x) =a

- _ 12
PG +(1—k )an(x/2)>.

(2) The second solution of (47), which we can take as the starting point of the proposed
procedure, is one of solutions in equation (52):

v1(x) = vp(x) =acosx +c¢ a>0 ¢>0

v3(x) = ki(Sin(x/2)) 2 + ka(sin(x /4) 2

va(x) = k3(Sin(x/2)) 2 + ka(sin(x /4)) 2.

Then according to equation (73), functioWgx) must be found from the equation

W"2(x) = acosW (x) + ¢
the solution of which can be expressed through the Jacobi function with modulitis =
2a/(a *c)):

W (x) = arccogl — 2(k sny)~?) y=3/(a+o)x. (77)
Thus the new solution of equation (47) is
ofG+/D) , dPG2) | dP(./2)
drf(y:/2)  SPP(+/2CM(y4/2)  CrP(y+/2)
crf(y-/2) | dré(y_/2) 1

as +ay

dré(y_/2)  srP(y_/2)cré(y_/2) " srP(y_/2)

Va(x1 + x2) = a1SrP(y+/2) + a

Va(x1 — x2) = azsrP(y_/2) +ay

ao
Vi(x) = Vo(x) = P

whereag anday are arbitrary constants.
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In conclusion, we briefly mention the analogous method of construction of new integrable
systems in quantum mechanics (see section 2). In this case the procedure is based on
equation (11) of section 2. Similarly to (71), we introduce in (11) new functidngA. ):

AZ(x0) = Mo(Ay)  AP(xD) = M_(A). (78)
Then equation (11) takes the form
[M(A+) — M"(AD)]L(A+ — As) + 3[M,(As) + M (AD)]L'(Ar — As)

+2[M+(As) — M_(A)]L"(A+ — Ay) = 0.

The general solution of this equation can be found in [17] and the corresponding functions
My(Ay), L(A+ — A_) can be used here to find_(x) from (78). Substitution of these
functionsA. (x) into ML (A1), L(A+ — A_) and equation (10) leads to new solutions of the
system equations (6) and (7) for the quantum case.

Acknowledgments

This paper was supported by RFBR grant no 99-01-00736. One of the authors (MI) was
partially supported by CIMO (Finland). He is also grateful to University of Helsinki (Professor
M Chaichian) for kind hospitality.

References

[1] Olshanetsky M and Perelomov A 198hys. Rep71313
[2] Kuznetzov V and Tsiganov A 198Bapiski Nauch. Seminarov POMI RAIN288 (in Russian) (Engl. trans).
Math. ScilSSN 1072-3374 (New York: Plenum))
[3] Andrianov A, loffe M and Nishnianidze D 1998hys. LettA 201103
[4] Andrianov A, loffe M and Nishnianidze D 199Bheor. Math. Physl041129
[5] Witten E 1981Nucl. PhysB 188513
Witten E 1982Nucl. PhysB 202253
[6] Lahiri A, Roy P K and Bagghi B 199(nt. J. Mod. PhysA 51383
[7] Andrianov A, Borisov N, loffe M and Eides M 198Bhys. LettA 109143
[8] Andrianov A, loffe M and Nishnianidze D 19%apiski Nauch. Seminarov POMI RA22468 (ed L Faddeev)
(in Russian) (Engl. transll. Math. ScilSSN 1072-3374 (New York: Plenum))
[9] Andrianov A, loffe M, Cannata F and Nishnianidze D 19BPhys. A: Math. Ger805037
[10] Andrianov A, loffe M and Spiridonov V 199Bhys. LettA 174273
Andrianov A, loffe M, Cannata F and Dedonder J-P 1885J. Mod. PhysA 102683
[11] Olshanetsky M and Perelomov A 1988ys. Rep94 313
[12] Kamke E 1976 Differentialgleichungen Losungmethoden und Losungéripzig: Akademische
Verlagsgesellschaft)
[13] Perelomov A 1990ntegrable Systems of Classical Mechanics and Lie Algelwbs (Boston, MA: Birkhauser)
[14] Hietarinta J 198%hys. RevA 283670
Hietarinta J 1984hys. Rev. Let62 1057
Hietarinta J 198 Phys. Repl4787
[15] Wojciechowski M and Wojciechowski S 19&hys. LettA 10511
[16] Grammaticos B, Dorizzi B and Ramani A 1983Math. Phys24 2289
Grammaticos B, Dorizzi B and Ramani A 1984Math. Phys25 1833
Grammaticos B, Dorizzi B and Ramani A 19BRys. Rev. Letd491539
[17] Inozemzev V 1984. Phys. A: Math. Gerl7 815



