
Classical integrable two-dimensional models inspired by SUSY quantum mechanics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 4641

(http://iopscience.iop.org/0305-4470/32/25/307)

Download details:

IP Address: 171.66.16.105

The article was downloaded on 02/06/2010 at 07:34

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/25
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 4641–4654. Printed in the UK PII: S0305-4470(99)97439-5

Classical integrable two-dimensional models inspired by
SUSY quantum mechanics

A A Andrianov, M V Ioffe and D N Nishnianidze
Sankt-Petersburg State University, 198 904 St Petersburg, Russia

E-mail: andrian@snoopy.phys.spbu.ru andioffe@snoopy.phys.spbu.ru

Received 10 September 1998, in final form 8 January 1999

Abstract. A class of integrable two-dimensional (2D) classical systems with integrals of motion
of fourth order in momenta is obtained from the quantum analogues with the help of deformed
SUSY algebra. With similar technique a new class of potentials connected with the Lax method
is found which provides the integrability of corresponding 2D Hamiltonian systems. In addition,
some integrable 2D systems with potentials expressed in elliptic functions are explored.

1. Introduction

Construction of classical integrable systems with additional integrals of motion is
of considerable interest in mathematical physics (see [1] and references therein).
Multidimensional integrable systems play an important role in describing the dynamics
analogously to one-dimensional (1D) manifestly integrable systems. In particular, they
may serve as zero approximations of perturbation theory in the case of weak, nonintegrable
perturbations. A variety of traditional approaches to this problem exists starting from Kepler,
Kowalewski until the Lax method. On the other hand, a modern viewpoint on how to
build classical integrable systems is based on the symmetries of related quantum systems
[2]. Recently, a method for searching quantum-integrable two-dimensional (2D) systems
was developed [3, 4] with the help of a deformed supersymmetry (SUSY) algebra formed by
intertwining differential operators of finite order. Supersymmetry [5–7], i.e. the construction
of the isospectral pair of Hamiltonians, was proved [3] to be in one-to-one correspondence
to integrability of both Hamiltonians, i.e. to existence of a differential symmetry operator,
which is polynomial in derivatives and which transforms solutions of the 2D Schrödinger
equation into other solutions with the same energy. Quasiclassical reduction of the deformed
SUSY algebra [3] gave the factorization of classical integrals of motion for the corresponding
Hamiltonians [8]. As a result, the structure of analytically resolved integrals of motion became
clearer, and new classes of integrable potentials were found [8, 9].

In our paper we continue our study [9] of classical systems in which integrability is induced
or inspired by a deformed SUSY algebra for the relevant quantum systems. The concise basic
construction of systems possessing a dynamical symmetry with the help of higher-derivative
SUSY algebra is essentially supplemented with algorithms for searching analytical solutions of
related nonlinear equations for coefficients of functions of symmetry operators and potentials.

In section 2 the intertwining relations between a pair of quantum Schrödinger-type
Hamiltonians for general differential operatorsq± of second order are investigated. The class
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of particular solutions of these relations is constructed for the cases of hyperbolic (Lorentz)
gik = diag(1,−1) and degenerategik = (1, 0) metric structures of operatorsq± in second
derivatives. The differential operators of fourth order in derivatives, which are symmetry
operators for intertwined Hamiltonians, are built. In section 3 the classical limit ¯h → 0 for
the Hamiltonians is considered, and the class of systems with integrals of motion of fourth
order in momenta is obtained. In section 4 a newclass of integrable systems with potentials
connected to the Lax method is derived using ansätze and techniques taken from 2D SUSY
quantum mechanics (section 2). Section 5 is devoted to a description of some integrable
systems expressed in elliptic functions. We stress that quite a few of the obtained potentials do
not allow separation of variables in known coordinate systems and some of them so far have
not been found.

2. Quantum integrable 2D systems

In the two-dimensional generalization [3, 4, 8] of higher-order SUSY quantum mechanics [10]
the intertwining relations of second order in derivatives are most essential:

H(1)q+ = q+H(2) q−H(1) = H(2)q−

H(i) = −h̄21 + V (Ex) 1 ≡ ∂2
1 + ∂2

2 ∂i ≡ ∂/∂xi
q+ = (q−)† = h̄2gik(Ex)∂i∂k + h̄Ci(Ex, h̄)∂i +B(Ex, h̄)

(1)

whereh̄ is Planck’s constant and all coefficient functions are real.
This means that, up to zero modes ofq±, spectra ofH(i) coincide and their eigenfunctions

are

9(2) ∼ q−9(1) 9(1) ∼ q+9(2). (2)

The intertwining relations (1) lead to existence of the symmetry operatorsR(1), R(2) for
the HamiltoniansH(1), H (2), respectively,

[R(i), H (i)] = 0 R(1) = q+q− R(2) = q−q+ i = 1, 2. (3)

In the 1D case [10] analogous symmetry operatorsR(i) become polynomials ofH(i) with
constant coefficients. The distinguishing peculiarity of the 2D case is existence [4] of nontrivial
dynamical symmetry operatorsR(i) which are not reduced to functions of the Hamiltonians
H(i).

It was shown in [3] that for the unit metricsgik = δik operatorsR(i) can be written
as second-order differential operators (up to a function ofH(i)) and corresponding quantum
systems allow separation of variables in parabolic, elliptic or polar coordinate systems. For
all other metricsgik operatorsR(i) are of fourth order in the derivatives.

The intertwining relations (1) are equivalent to the following system of differential
equations:

h̄∂iCk + h̄∂kCi + h̄21gik − (V (1) − V (2))gik = 0

h̄21Ci + 2h̄∂iB + 2h̄gik∂kV
(2) − (V (1) − V (2))Ci = 0 (4)

h̄21B + h̄2gik∂k∂iV
(2) + h̄Ci∂iV

(2) − (V (1) − V (2))B = 0

where the metricsgik is a quadratic polynomial inx1, x2:

g11 = ax2
2 + a1x2 + b1

g22 = ax2
1 + a2x1 + b2

g12 = − 1
2(2ax1x2 + a1x1 + a2x2) + b3.
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2.1. Lorentz metrics

For the supercharges with Lorentz metrics(gik = diag(1,−1)):

q+ = h̄2(∂2
1 − ∂2

2) + h̄Ck∂k +B (5)

a solution of (4) can be reduced [4] to a solution of the system

∂−(C−F) = −∂+(C+F) (6)

∂2
+F = ∂2

−F (7)

whereC1 ∓ C2 ≡ C±(x±) depend only onx±, respectively. Equation (7) means that the
functionF can be represented as a sumF = F1(x+ + x−)+F2(x+− x−). The potentialsV (1,2)

and the functionB are expressed in terms of solutions of the system (6) and (7):

V (1,2) = ± 1
2h̄(C

′
+ +C ′−) + 1

8(C
2
+ +C2

−) + 1
4(F2(x+ − x−)− F1(x+ + x−)) (8)

B = 1
4(C+C− + F1(x+ + x−) + F2(x+ − x−)). (9)

The solutions for functionsF, which admit additionally the factorizationF = F+(x+) ·
F−(x−), were found in [14]. In the present paper other solutions of (6) and (7) will be built.

(1) After substitution of the general solution of (6)

F = L
(∫

dx+

C+
−
∫

dx−
C−

)/
(C+C−) (10)

into (7), we obtain the functional-differential equation for functionsL andA′± ≡ 1/C±(x±):(
A′′′+
A′+
− A

′′′
−

A′−

)
L(A+ − A−) + 3(A′′+ +A′′−)L

′(A+ − A−) + (A′2+ − A′2−)L′′(A+ − A−) = 0

(11)

whereL′ denotes the derivative ofL with respect to its argument. Equation (11) can be easily
solved for functionsA± such thatA′′± = λ2A±, then

L(A+ − A−) = α(A+ − A−)−2 + β

for A± = σ± exp(λx±) + δ± exp(−λx±) with σ+ · δ+ = σ− · δ− andα, β real constants. For
λ2 > 0 we obtain (up to an arbitrary shift inx±) two solutions:

(1a) A± = k sinh(λx±)
(1b) A± = k cosh(λx±).

Then (10) leads to:

(1a) F1(2x) = F2(2x) = k1

cosh2(λx)
+ k2 cosh(2λx) C± = k

cosh(λx±)
k 6= 0

(12)

(1b) F1(2x) = −F2(2x) = k1

sinh2(λx)
+ k2 sinh2(λx) C± = k

sinh(λx±)
k 6= 0.

(13)

Forλ2 < 0 hyperbolic functions must be substituted by trigonometric ones.
At last, in the limiting case ofλ = 0 the solutions have the form

F1(2x) = −F2(2x) = k1x
−2 + k2x

2 C± = k

x±
k 6= 0 (14)

F1(2x) = −F2(2x) = k1x
2 + k2x

4 C± = ± k

x±
k 6= 0. (15)
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(2) To find another class of solutions of the system (6) and (7) it is useful to replace in (10)C±
byf±, such thatC± ≡ ±f±/f ′±. ThenF in (10) is represented in the formF = U(f+f−)f ′+f

′
−

with an arbitrary functionU. After substitution in (7) one obtains the equation

(f ′2+ f
2
− − f 2

+ f
′2
− )U

′′(f ) + 3f

(
f ′′+
f+
− f

′′
−
f−

)
U ′(f ) +

(
f ′′′+

f ′+
− f

′′′
−
f ′−

)
U(f ) = 0 f ≡ f+f−.

One can check thatf± = α± exp(λx±) + β± exp(−λx±) andU = a + 4bf+f− are its
particular solutions(a, b are real constants). Then functions

F1(x) = k1(α+α− exp(λx) + β+β− exp(−λx)) + k2(α
2
+α

2
− exp(2λx) + β2

+β
2
− exp(−2λx))

−F2(x) = k1(α+β− exp(λx) + β+α− exp(−λx)) + k2(α
2
+β

2
− exp(2λx)

+β2
+α

2
− exp(−2λx))

C± = ± α± exp(λx±) + β± exp(−λx±)
λ(α± exp(λx±)− β± exp(−λx±))

(16)

are real solutions of the system (6) and (7) ifα±, β± are real for the caseλ2 > 0 andα± = β∗±
for the caseλ2 < 0.

(3) To find a third class of solutions it is useful to rewrite (6) in terms of the variablesx1,2:

2(F1(x1) + F2(x2))∂1(C+ +C−) + F ′1(x1)(C+ +C−) + F ′2(x2)(C+ − C−) = 0.

Its solutions are:
(3a) C+(x+) = σ1σ2 exp(λx+) + δ1δ2 exp(−λx+) + c

C−(x−) = σ1δ2 exp(λx−) + σ2δ1 exp(−λx−) + c

F1(x1) = 0 F2(x2) = 1

(σ2 exp(λx2)− δ2 exp(−λx2))2

(17)

(3b) C+(x) = C−(x) = ax2 + c F1(x1) = 0 F2(x2) = 4b2

x2
2

(18)

(3c) C+(x+) = σ1σ2 exp(λx+) + δ1δ2 exp(−λx+)

C−(x−) = σ1δ2 exp(λx−) + σ2δ1 exp(−λx−)
F1,2(x1,2) = ν1,2

(σ1,2 exp(λx1,2)± δ1,2 exp(−λx1,2))2
± γ.

(19)

Let us remark that two additional solutions, analogous to (3a) and (3b), can be obtained by
replacingF1(x1) with F2(x2) and vice versa.

After inserting these solutions (12)–(19) into the general formulae for potentials (8), we
obtain, correspondingly, the following expressions for potentials (20)–(27):

V (1,2) = ∓ h̄kλ
2

[
sinh(λx+)

cosh2(λx+)
+

sinh(λx−)
cosh2(λx−)

]
+
k2

8

[
1

cosh2(λx+)
+

1

cosh2(λx−)

]
+

1

4

[
k1

cosh2(λx2)
− k1

cosh2(λx1)
+ k2 cosh(2λx2)− k2 cosh(2λx1)

]
(20)

V (1,2) = ∓ h̄kλ
2

[
cosh(λx+)

sinh2(λx+)
+

cosh(λx−)
sinh2(λx−)

]
+
k2

8

[
1

sinh2(λx+)
+

1

sinh2(λx−)

]
−1

4

[
k1

sinh2(λx2)
+

k1

sinh2(λx1)
+ k2 cosh(2λx1) + k2 cosh(2λx2)

]
(21)

V (1,2) = ∓ h̄k
2

(
1

x2
+

+
1

x2−

)
+
k2

8

(
1

x2
+

+
1

x2−

)
− 1

4

[
k1

x2
1

+
k1

x2
2

+ k2(x
2
1 + x2

2)

]
. (22)
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Let us note that the potential (21) withk2 = 0 and the potential (22) were investigated in the
literature (cf, for example, [11]).

V (1,2) = ∓ h̄k
2

(
1

x2
+

− 1

x2−

)
+
k2

8

(
1

x2
+

+
1

x2−

)
− 1

4

[
k1(x

2
1 + x2

2) + k2(x
4
1 + x4

2)
]

(23)

V (1,2) = 2α+β+(1∓ 8h̄λ2) + α2
+ exp(2λx+) + β2

+ exp(−2λx+)

8λ2(α+ exp(λx+)− β+ exp(−λx+))2

+
2α−β−(1± 8h̄λ2) + α2

− exp(2λx−) + β2
− exp(−2λx−)

8λ2(α− exp(λx−)− β− exp(−λx−))2
− 1

4

[
k1(α+β− exp(2λx2) + α−β+ exp(−2λx2)) + k2(α

2
+β

2
− exp(4λx2)

+α2
−β

2
+ exp(−4λx2)) + k1(α+α− exp(2λx1) + β+β− exp(−2λx1))

+k2(α
2
+α

2
− exp(4λx1) + β2

+β
2
− exp(−4λx1))

]
(24)

V (1,2) = ± 1
2h̄λ(σ1 exp(λx1)− δ1 exp(−λx1))(σ2 exp(λx2) + δ2 exp(−λx2))

+1
8

[
(σ 2

1 exp(λx1) + δ2
1 exp(−λx1))(σ

2
2 exp(λx2) + δ2

2 exp(−λx2))

+2c(σ1 exp(λx1)− δ1 exp(−λx1))(σ2 exp(λx2)− δ2 exp(−λx2))
]

+
1

4(σ2 exp(2λx2)− δ2 exp(−2λx2))2
(25)

V (1,2) = ±2h̄ax1 + 1
4

[
a2(x4

1 + x4
2 + 6x2

1x
2
2) + ac(x2

1 + x2
2)
]

+
b2

x2
2

(26)

V (1,2) = ± 1
2h̄λ(σ1 exp(λx1)− δ1 exp(−λx1))(σ2 exp(λx2) + δ2 exp(−λx2))

+1
8(σ

2
1 exp(λx1) + δ2

1 exp(−λx1))(σ
2
2 exp(λx2) + δ2

2 exp(−λx2))

+
ν2

(σ2 exp(2λx2)− δ2 exp(−2λx2))2
− ν1

(σ1 exp(2λx1) + δ1 exp(−2λx1))2
.

(27)

The Hamiltonians with potentials (20)–(27) possess the symmetry operatorsR(1) =
q+q−, R(2) = q−q+, whereq± can be obtained by inserting solutions (12)–(19) into (5).

It is necessary to note that there are some singular points of potentials (21)–(27) on the plane
(x1, x2). Therefore, both the asymptotics of corresponding wavefunctions and their behaviour
under the action of supertransformation operatorsq± (5) and of symmetry operatorsR(1), R(2)

have to be investigated. In particular, for the potentials (23)–(27) the operatorsq± preserve
asymptotics of wavefunctions in the singular points, so the operatorsR(1), R(2) are physical
symmetry operators for these systems. For the potentials (21) and (22) symmetry properties
have been discussed previously (see, for example, [11]).

2.2. Degenerate metrics

For the supercharges with degenerate metricsgik = diag(1, 0):

q+ = h̄2∂2
1 + h̄Ck∂k +B (28)

equations (4) lead to

C1(Ex) = −x2F
′
1(x1) +G1(x1); C2(Ex) = F1(x1)

V (1) = h̄(2G′1− x2F
′′
1 ) + 1

4x
2
2(F

2
1 )
′′ − x2(F1G1)

′ +K1(x1) +K2(x2)

V (2) = h̄x2F
′′
1 + 1

4x
2
2(F

2
1 )
′′ − x2(F1G1)

′ +K1(x1) +K2(x2)

B = − 1
2h̄(G

′
1 + x2F

′′
1 ) + 1

2G
2
1 − 1

2x
2
2F1F

′′
1 + x2F1G

′
1−K1(x1)

(29)
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where the real functionsF1(x1),G1(x1) andK1(x1) are solutions of the following system:

− 1
2h̄

2G′′′1 + 1
2h̄((G

2
1)
′′ + 2G′21 ) +G1K

′
1 + 2G′1K1− F1(F1G1)

′ −G′1G2
1 = m1F1 (30)

1
2h̄

2F
(IV )
1 − h̄(F ′1G′′1 + 2G′1F

′′
1 )−G1(2G

′
1F
′
1 +G′′1F1)

−F ′1K ′1 + 1
2F1(F

2
1 )
′′ − 2G′21 F1− 2F ′′1K1 = m2F1 (31)

1
4G1(F

2
1 )
′′′ + F ′1(F1G1)

′′ + 3G′1F1F
′′
1 = m3F1 (32)

1
4F
′
1(F

2
1 )
′′′ + F1F

′′2
1 = m4F1 (33)

andK2(x2) is the polynomial ofx2 with constant coefficients:

K2(x2) = m0 −m1x2 − 1
2m2x

2
2 − 1

3m3x
3
2 + 1

4m4x
4
2.

Several particular solutions of equation (33) can be found. The constant functionF1 = k1

is the solution of (33) form4 = 0. To find other solutions we define the new functionU(F1):

U(F1) = F ′1(x1) (34)

to decrease the order of the differential equation (33):

U ′′ +
3

U
U ′2 +

3

F1
U ′ − 2m4

U3
= 0. (35)

Inserting its known solution [17] into (34), the following equation forF1(x1) is obtained:∫
F

1/2
1 (m4F

4
1 + nF 2

1 + k)−1/4 dF1 = x1 n, k = constant. (36)

The integral (36) can be written as a finite combination of elementary functions only in the
case when two of the three constantsm4, n, k are zero. Thus the solutions of equation (33) in
elementary functions are:F1 = k1;F1 = x1/n;F1 =

(
3
2

)2/3
k1/6x

2/3
1 ;F1 = m1/2

4 x2
1/4. Below,

for simplicity, we shall consider the solutions with particular values of constantsm4, n, k,

while solutions with arbitrary values of these constants will differ by some of the coefficients
only. To solve equations (30)–(32) it is useful to consider separately two cases:G1 ≡ 0 and
G1 6≡ 0. In both cases solutions withF1 = x1 lead to potentialsV (1,2) with separation of
variables. Below such solutions will be ignored.

(1) G1 = 0.

In this case the potentialsV (1,2) for F1 = k1 correspond again to Schrödinger equations
with separation of variables. More interesting choicesF1 = x2

1 and F1 = x
2/3
1 lead,

respectively, to potentials (l-arbitrary real constant):

V (1,2) = ∓2h̄x2 + lx−2
1 + 1

2

(
x4

1 + 6x2
1x

2
2 + 8x4

2

)− 1
8m2

(
x2

1 + 4x2
2

)
(37)

V (1,2) = 7
36h̄

2x−2
1 ± 2

9h̄x2x
−4/3
1 + 1

9x
−2/3
1

(
x2

2 + 9
2x

2
1

)
9lx2/3

1 − 1
8m2

(
9x2

1 + 4x2
2

)
. (38)

(2) G1 6= 0.

(2a) ForF1 = k1 6= 0 equation (31) leads to the following equation forG1(x1):∫
G2

1 dG1√
k − 1

2m2G
4
1

= x1
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which has the solutions in terms of elementary functions in two cases: whenk > 0, m2 = 0
or k = 0, m2 < 0. For the first one, after redefinition of constants and translation inx2,

V (1,2) = − 5
36h̄

2x−2
1 + 1

3h̄k2(1± 1)x−2/3
1 − 1

3k1k2x2x
−2/3
1

+
1

4

(
k2

2 +
3k1m1

k2

)
x

2/3
1 −m1x2 +

k2
1

2
. (39)

The second case(k = 0, m2 < 0) leads to separation of variables.

(2b) If F1 = x2/3
1 andF1 = x2

1 the general solutions of equation (32) can be found and after
substitution into (30), (31) give the functionK1(x1). Corresponding potentials are

V (1,2) = 7
36h̄

2x−2
1 ± 2

9h̄x2x
−4/3
1 ± h̄k1 + 1

9x
−2/3
1

(
x2

2 + 9
2x

2
1

)− 5
3k1x2x

2/3
1

+
3m1

8k1
x

2/3
1 + 1

4k
2
1x

2
1 −m1x2 + 1

9k1(1 + 15k1)x
2
2 (40)

V (1,2) = ( 3
4h̄

2 ∓ h̄k1 + 1
4k

2
1

)
x−2

1 ∓ 2h̄x2 + 1
2

(
x4

1 + 6x2
2x

2
1 + 8x4

2

)
− 1

8(12k2 +m2)(x
2
1 + 4x2

2)− 1
4

(
km2 + 6k3 + 4k1

)
x2. (41)

Because all potentials (37)–(41) are singular at thex2 axis, similar to the case of
Lorentz metrics, it is necessary to investigate separately the behaviour of wavefunctions
at x1 → 0. Straightforward though cumbersome calculations show that the fourth-order
differential operatorsR(1), R(2) (see equations (3)) preserve the asymptotics of wavefunctions
for systems (37)–(41) and play the role of true dynamical symmetry operators.

3. Construction of 2D integrable classical systems by the limit ¯h→ 0

Quantum dynamical symmetries which were found by the intertwining method in section 2
have their natural analogues (integrals of motion) in the corresponding classical systems. These
integrals of motion are polynomials of fourth order in momenta. Similar to section 2, it is useful
to consider separately the classical limits for Lorentz and degenerate metrics.

3.1. Lorentz metrics

For the Lorentz metrics in the limit ¯h→ 0 classical supercharge functions become

q±cl = −4p+p− ± i(C−(x−)p+ +C+(x+)p−) +B(x−, x+).

From equations (8) and (3) we find that the classical Hamiltonian

hcl = 2(p2
+ + p2

−) + 1
8(C

2
+ +C2

−) + 1
4[F2(x+ − x−)− F1(x+ + x−)] (42)

has the additional integral of motion:

I = 16p2
+p

2
− +C2

+p
2
− +C2

−p
2
+ − 2(F1 + F2)p+p− +B2. (43)

Such types of classical systems were considered in the literature (see [13] and references
therein). Usually the functional equation, which provides existence of integrals of motion for
corresponding classical systems, is solved by the Lax method. Comparison of (42) and (43)
with notations in [13] leads to the relations

v1 ≡ 1/8C2
+(x1)

v2 ≡ 1/8C2
−(x2)

v3(x−) ≡ 1/16F2(x−)
v4(x+) ≡ −1/16F1(x+)

(44)
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and functionsvk must satisfy [13] a certain functional equation (see equation (47) below). In
the next section we prove that (44), whereC±, F1,2 are solutions of the system (6) and (7),
also satisfy equation (47). Moreover, some additional solutions of this equation will be found
in section 4.

3.2. Degenerate metrics

Let us study the integrable classical systems which can be obtained in the limit ¯h → 0
from SSQM systems with degenerate metrics inq±. The classical supercharges have the form
q+
cl = (q−cl )∗ = −p2

1 + iCk(Ex)pk +B(Ex) and the Hamiltonian

Hcl = p2
k + 1

2x
2
2∂

2
1F

2
1 − x2(F1G1)

′ +K1(x1) +K2(x2) (45)

has the integral of motion of fourth order in momenta:

I ≡ q+
clq
−
cl = p4

1 + (C2
1 − 2B)p2

1 +C2
2p

2
2 + 2C1C2p1p2 +B2. (46)

All functions in (45) and (46) were defined in the previous section, where we have to put ¯h = 0.
Thus in the case of degenerate metrics the following classical integrable systems are

obtained (new definitions of constants were used for some of these systems):

(1)

V = 1
2

(
x4

1 + 6x2
1x

2
2 + 8x4

2

)
+m

(
x2

1 + 4x2
2

)
+ lx−2

1

I = p4
1 +

(
6x2

1x
2
2 +mx2

1 + x4
1 + 2lx−2

1

)
p2

1 + x4
1p

2
2

−4x3
1x2p1p2 +

(
x2

1x
2
2 +mx2

1 + 1
2x

4
1 + lx−2

1

)2
(2)

V = 1
9x
−2/3
1

(
9
2x

2
1 + x2

2

)
+m

(
9x2

1 + 4x2
2

)
+ kx2/3

1

I = p4
1 +

(
2
9x

2
2x
−2/3
1 + 2kx2/3

1 + 18mx2
1 + x4/3

1

)
p2

1 + x4/3
1 p2

2

− 4
3x2x

1/3
1 p1p2 +

(
1
9x

2
2x
−2/3
1 − kx2/3

1 − 9mx2
1 − 1

2x
4/3
1

)2
(3)

V = −k1k2

3
x2x
−2/3
1 +

1

4

(
k2

2 +
3k1m1

k2

)
x

2/3
1 −m1x2

I = p4
1 +

[
1

2

(
k2

2 +
3k1m1

k2

)
x

2/3
1 −

2k1k2

3
x2x
−2/3
1 + k2

1

]
p2

1 + k2
1p

2
2

+2k1k2x
1/3
1 p1p2 +

[
k1k2

3
x2x
−2/3
1 +

1

4

(
k2

2 −
3k1m1

k2

)
x

2/3
1 −

k2
1

2

]2

(4)

V = 1

9
x
−2/3
1

(
9

2
x2

1 + x2
2

)
− 5k

3
x2x

2/3
1 +

3m

8k
x

2/3
1 +

k2

4
x2

1 −mx2 +
k

9
(1 + 15k)x2

2

I = p4
1 +

(
2

9
x2

2x
−2/3
1 − 10k

3
x2x

2/3
1 +

k2

2
x2

1 +
3m1

4k
x

2/3
1 + x4/3

1

)
p2

1 + x4/3
1 p2

2

+2x2/3
1

(− 2
3x2x

−1/3
1 + kx1

)
p1p2

+

(
1

9
x2

2x
−2/3
1 + kx2x

2/3
1 −

3m1

8k
x

2/3
1 −

1

2
x

4/3
1 +

k2

4
x2

1

)2
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(5)

V = 1
2

(
x4

1 + 6x2
1x

2
2 + 8x4

2

)
+m

(
x2

1 + 4x2
2

)
+ 1

4k
2
1x
−2
1 −

(
k1− 2mk − 3

2k
3
)
x2

I = p4
1 +

(
6x2

1x
2
2 + 2

(
m + k2

)
x2

1 − 2k1x2 − 4kx2
1x2 + x4

1 + 1
2k

2
1x
−2
1 + kk1

)
p2

1

+x4
1p

2
2 + 2x1

(
k1− 2x2

1x2
)
p1p2

+
(
x2

1x
2
2 +

(
m + 1

2k
2
)
x2

1 + 1
2x

4
1 + k1x2 − 4k

2
1x
−2
1 − 1

2kk1
)2
.

These potentials are not new: they were found by other methods in [14–16].
In conclusion of this section we formulate the procedure of construction of integrals of

motion in terms of classical mechanics objects. For any classical HamiltoniansHcl and a
complex functionq+

cl(Ex, Ep) = (q−cl )∗, polynomial in momenta, such that

{q+
cl, Hcl} = if (Ex, Ep)q+

cl {(q+
cl)
∗, Hcl} = −if (Ex, Ep)(q+

cl)
∗

with arbitrary real functionf (Ex, Ep), the classical factorizable integral of motionI = q+
cl · q−cl

exists({ , }-Poisson brackets).

4. Integrable systems connected with the Lax method

Let us consider classical systems with potentials of the form

V (x1, x2) = v1(x1) + v2(x2) + v3(x1− x2) + v4(x1 + x2).

It is known [13] that these systems have the integrals of motion of fourth order in momenta:

I = 1
2p

2
1p

2
2 + v2(x2)p

2
1 −

(
v3(x1− x2)− v4(x1 + x2)

)
p1p2 + v1(x1)p

2
2 + f

if the functionsv1, v2, v3, v4 satisfy the basic functional equation:

[v4(x1 + x2)− v3(x1− x2)][v
′′
2(x2)− v′′1(x1)] + 2[v′′4(x1 + x2)− v′′3(x1− x2)]

×[v2(x2)− v1(x1)] + 3v′4(x1 + x2)[v
′
2(x2)− v′1(x1)]

+3v′3(x1− x2)[v
′
2(x2) + v′1(x1)] = 0. (47)

There is a list of known particular solutions of equation (47) in the book [13]. To search
for new solutions of this equation it is useful to rewrite it in the equivalent form

∂2(vv
′
2 + 2v2∂2v) = ∂1(vv

′
1 + 2v1∂1v) (48)

where

v ≡ v4(x1 + x2)− v3(x1− x2). (49)

The general solution of equation (48) is

v =
[
G

(∫
dx1√
v1

+
∫

dx2√
v2

)
+L

(∫
dx1√
v1

−
∫

dx2√
v2

)]/√
v1v2 v1 6≡ 0 v2 6≡ 0

(50)

whereG andL are arbitrary functions of their arguments. Thus the problem is reduced to
searching for the functionsv of the form (50), which satisfy the condition

(∂2
1 − ∂2

2)v = 0. (51)

In particular, it is easy to check that all solutions which were found from SSQM in the ¯h→ 0
limit in section 3 (see equation (44)) are particular solutions of equation (47) and have the form
(50) withG ≡ 0.
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Let us apply the technique, which was used in investigation of the system (6) and (7) in
the framework of SSQM, to find the new particular solutions of equation (48).

(1) If the functionv is factorizablev = u1(x1) · u2(x2), equation (48) admits separation of
variables and its solutions have the form

vk = nk[ak exp(
√
λxk) + bk exp(−√λxk)] + lk

(ak exp(
√
λxk)− bk exp(−√λxk))2

k = 1, 2.

v3 = a1b2 exp(
√
λ · x−) + a2b1 exp(−

√
λ · x−)

v4 = a1a2 exp(
√
λ · x+) + b1b2 exp(−

√
λ · x+)

(52)

where forλ > 0 all constants are real and forλ < 0 ak = b∗k andnk, lk are real.

(2) Let us introduce new functions

v1 ≡ (W ′1)−2 v2 ≡ (W ′2)−2. (53)

Then equation (51) means that (derivatives ofG andL are taken in their arguments):

(G +L)

[
W ′′′1

W ′1
− W

′′′
2

W ′2

]
+ 3[(W ′′1 −W ′′2 )G′ + (W ′′1 +W ′′2 )L

′]

+(W ′21 −W ′22 )(G
′′ +L′′) = 0. (54)

It is possible to construct several particular solutions of (54).

(2a) W1,2 = σ1,2 exp(λx1,2) + δ1,2 exp(−λx1,2) (55)

where constantλ2 is real andσk, δk are complex. If these constants satisfy the condition

σ1δ1 = σ2δ2 (56)

then substitution of (55) into (54) leads to an equation with separable variables. Its solutions
are

G(W1 +W2) = α1

(W1 +W2)2
+ α(W1 +W2)

2 + β1 (57)

L(W1−W2) = α2

(W1−W2)2
+ α(W1−W2)

2 + β2 (58)

with arbitrary constantsα, αi, βi(i = 1, 2).
Let us consider the case withλ2 > 0. Constantsσ1 andδ1 must be both real or both positive

because of the requirement that functionsvn(xn) for n = 1, 2 should be real. Analogous
arguments work for the pairσ2, δ2. The condition (56) for real(σi, δi) leads to two options:

W1(x) = W2(x) = k cosh(λx) (59)

W1(x) = W2(x) = k sinh(λx) k ∈ R (60)

and the functionv is real for real constantsα, αi, βi(i = 1, 2).
In the case of real(σ1, δ1) and imaginary(σ2, δ2) the solutions take the form

W1 = k sinh(λx1) W2 = ik cosh(λx2) (61)

W1 = k cosh(λx1) W2 = ik sinh(λx2) k ∈ R. (62)

Let us remark that in this case the arguments of the functionsG andL are complex conjugated
and in order to have a real functionv the following relation must be fulfilled:

L∗(W1 +W2) = −G(W1 +W2).



Classical integrable 2D models inspired by SUSY 4651

Therefore,α2 = −α∗1;β2 = −β∗1;α = α∗ in (57) and (58).

(2b) W1 = W2 = gx2 g2 ∈ R. (63)

It follows from equation (54) that

G = a0 + a1(W1 +W2) + a(W1 +W2)
2 L = b0 − 1

4a(W1−W2)
2 +

b

(W1 +W2)2

where all constants are real.
Thus the functionsvn (n = 1, . . . ,4) for solutions (59)–(63) are, respectively,

v1(x) = v2(x) = k

sinh2(λx)

v3(x) = v4(x) = k1

sinh2(λx)
+

k2

sinh2(λx/2)
+ k3 cosh(2λx) + k4 cosh(λx)

(64)

v1(x) = v2(x) = k

cosh2(λx)

v3(x) = k1

sinh2(λx)
+

k2

sinh2(λx/2)
+ k3 cosh(2λx) + k4 cosh(λx)

v4(x) = k1 + 4k2

sinh2(λx)
− k2

sinh2(λx/2)
+ k3 cosh(2λx)− k4 cosh(λx)

(65)

v1(x) = k

cosh2(λx)
v2(x) = − k

sinh2(λx)

v3(x) = v4(x) = k1 + k2 sinh(λx)

cosh2(λx)
+ k3 cosh(2λx)− k4 sinh(λx)

(66)

v1(x) = k

sinh2(λx)
v2(x) = − k

cosh2(λx)

v3(x) = k1 + k2 sinh(λx)

cosh2(λx)
+ k3 cosh(2λx) + k4 sinh(λx)

v4(x) = k1− k2 sinh(λx)

cosh2(λx)
+ k3 cosh(2λx)− k4 sinh(λx)

(67)

v1(x) = v2(x) = kx−2 v3(x) = v4(x) = k1x
−2 + k2x

2 + k3x
4 + k4x

6 (68)

v1 = g1

(δ1 exp(λx)− σ1 exp(−λx))2 v2 = g2

(δ2 exp(λx)− σ2 exp(−λx))2
v3(x) = k1(δ1σ2 exp(λx) + σ1δ2 exp(−λx)) + k2(δ

2
1σ

2
2 exp(2λx) + σ 2

1 δ
2
2 exp(−2λx))

v4(x) = k1(δ1δ2 exp(λx) + σ1σ2 exp(−λx)) + k2(σ
2
1σ

2
2 exp(2λx) + δ2

1δ
2
2 exp(−2λx)).

(69)

The solutions (65)–(67) are absent in the list of [13] and to our knowledge they are novel.
As to expressions (69), they are present in [13] only forσ1δ1 > 0, σ2δ2 > 0.

In conclusion, let us note that one can easily check some invariance properties of
equation (47). In particular, from arbitrary solutions (52) and (64)–(69) one derives new
ones with

v4(2x)→ v1(x) v3(2x)→ v2(x) v1(x)→−v3(x) v2(x)→−v4(x). (70)

Equation (47) is invariant ifv1,2→ v1,2 + c andv3,4→ v3,4 + c̃ with arbitrary constantsc, c̃.
It is also invariant under dilation of all argumentsxi → 3xi .
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5. Integrable systems with potentials, expressed in elliptic functions

In this section we formulate the method of construction of new integrable systems from
solutionsvi of equation (47), which were found in the previous section. If we define new
functions

W ′21 = f1(W1) W ′22 = f2(W2) (71)

equation (54) takes the form

[G(W1 +W2)− L(W1−W2)][f
′′
2 (W2)− f ′′1 (W1)]

+2[G′′(W1 +W2)− L′′(W1−W2)][f2(W2)− f1(W1)]

+3G′(W1 +W2)[f
′
2(W2)− f ′1(W1)]

+3L′(W1−W2)[f
′
2(W2) + f ′1(W1)] = 0. (72)

This equation has the same structure as equation (47), thus from (71) we obtain

W ′21 = v1(W1) W ′22 = v2(W2)

G(W1 +W2) = v4(W1 +W2) L(W1−W2) = −v3(W1−W2) (73)

where we can use solutions (52) and (64)–(69) forvn(x) (n = 1, . . . ,4) with arguments
x1,2 replaced, respectively, byW1,2. The first pair of equations in (73) defines functions
W1(x1),W2(x2) and the last two equations define new functionsG,L. Substituting these
sets of functions into (53) and (50), we find some new solutionsVn of the same equation (47)
from already known solutionsvn (see (52) and (64)–(69)).

Let us consider several examples of this method of reproducing new solutions.

(1) The first attempt to start our procedure from the simplest solutions (68) leads to a
discouraging result: we obtain the same solution. However, we can firstly transform
v1,2⇐⇒ v3,4 in (68), using the invariance property (70) mentioned at the very end of section 4.
As follows from (73), the functionsW1,2(x1,2) are defined from the equations (we omit indices
i = 1, 2)

W ′2(x) = k1W
−2 + k2W

2 + k3W
4 + k4W

6 + k0

with constantki. It is useful to rewrite them in terms of functionsU(x) ≡ 1
2W

2(x):

U ′2(x) = k1 + k0U + k2U
2 + k3U

3 + k4U
4. (74)

From (50) and (53) we obtain new solutions:

V1 = g1
U(x1)

U ′2(x1)
V2 = g1

U(x2)

U ′2(x2)
(75)

V4(x1 + x2)− V3(x1− x2) = g U ′(x1)U
′(x2)

(U(x1)− U(x2))2
(76)

where arbitrary constantsg1, g appear because solutionsvn are defined from equation (47)
up to constant factors. We can check directly that forU(x), which satisfy equation (74), the
right-hand side of (76) is the solution of equation (51).

When the right-hand side polynomial in equation (74) has degenerate roots,U(x) can
be expressed through elementary functions and corresponds to solutions (52) and (64)–(69),
found above. When all roots are simple,U(x) can be given in terms of elliptic functions.

(1a) U(x) = ℘(x) + b
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whereb is constant and℘(x) is the Weierstrass function with semiperiodsω1 andω2 (their
values depend on constantski). Equations (75) and (76) lead to new solutions:

V1(x) = V2(x) = a1℘(x + ω1) + a2℘(x + ω2) + a3℘(x + (ω1 + ω2)/2)

V3(x) = V4(x) = a℘(x)
wherea is an arbitrary constant and constantsak (k = 1, 2, 3) satisfy the following condition:∑

k

a2
k −

∑
i 6=j

aiaj = 1.

(1b) U(x) = snx + b, whereb is constant and sn(x) is the Jacobi function with modulusk
(it depends again on constantski). In this case new solutions are

V1(x) = V2(x) = a snx + b

cn2x dn2x

V3(x) = c
(

1

sn2(x/2)
− k2cn2(x/2)− k2

)
V4(x) = c(1− k2)

(
1

cn2(x/2)
− 1

sn2(x/2)

)
.

(1c) U(x) = dnx + b.
Correspondingly, the new solution takes the form

V1(x) = V2(x) = a dnx + b

sn2x dn2x

V3(x) = V4(x) = c
(

1

sn2(x/2)
+ (1− k2)cn2(x/2)

)
.

(2) The second solution of (47), which we can take as the starting point of the proposed
procedure, is one of solutions in equation (52):

v1(x) = v2(x) = a cosx + c a > 0 c > 0

v3(x) = k1(sin(x/2))−2 + k2(sin(x/4))−2

v4(x) = k3(sin(x/2))−2 + k4(sin(x/4))−2.

Then according to equation (73), functionsW(x) must be found from the equation

W ′2(x) = a cosW(x) + c

the solution of which can be expressed through the Jacobi function with modulusk (k2 ≡
2a/(a + c)):

W(x) = arccos(1− 2(k sny)−2) y ≡ 1
2

√
(a + c) x. (77)

Thus the new solution of equation (47) is

V4(x1 + x2) = a1sn2(y+/2) + a2
cn2(y+/2)

dn2(y+/2)
+ a3

dn2(y+/2)

sn2(y+/2)cn2(y+/2)
+ a4

dn2(y+/2)

cn2(y+/2)

V3(x1− x2) = a2sn2(y−/2) + a1
cn2(y−/2)
dn2(y−/2)

+ a3
dn2(y−/2)

sn2(y−/2)cn2(y−/2)
+ a4

1

sn2(y−/2)

V1(x) = V2(x) = a0

cn2y

wherea0 andak are arbitrary constants.
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In conclusion, we briefly mention the analogous method of construction of new integrable
systems in quantum mechanics (see section 2). In this case the procedure is based on
equation (11) of section 2. Similarly to (71), we introduce in (11) new functionsM±(A±):

A′2+ (x+) = M+(A+) A′2−(x−) = M−(A−). (78)

Then equation (11) takes the form

[M ′′+(A+)−M ′′−(A−)]L(A+ − A+) + 3[M ′+(A+) +M ′−(A−)]L
′(A+ − A+)

+2[M+(A+)−M−(A−)]L′′(A+ − A+) = 0.

The general solution of this equation can be found in [17] and the corresponding functions
M±(A±), L(A+ − A−) can be used here to findA±(x) from (78). Substitution of these
functionsA±(x) intoM±(A±), L(A+ − A−) and equation (10) leads to new solutions of the
system equations (6) and (7) for the quantum case.
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